

Partial Pressure

When there is a mixture of gasses, each gas will exert a pressure in direct proportion to its representation in the mixture.

Consider this hypothetical model:
100 mm Hg
100 mm Hg

| PO_{2} | 30 mm Hg | 30% | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PN_{2} | 50 mm Hg | 50% | 20 mm Hg | 20% |

Although the pressure in both containers is identical, 100 mm Hg , each gas will exert a partial pressure in direct proportion to its representation in the mixture. Each gas will move down its pressure gradient until an equilibrium is reached.

Page 2

Atmospheric Pressures

Atmospheric pressue at sea level is 760 mm Hg .
$\left.\begin{array}{lc}\text { Gas } & \text { Partial Pressure }\end{array} \begin{array}{c}\text { Percent Distribution } \\ \text { In Mixture of Ga }\end{array}\right]$

Inter-Alveolar Pressures

Gas	Partial Pressure	Percent Distribution In Mixture of Gases
$\mathrm{PO}_{2}=104 \mathrm{~mm} \mathrm{Hg}$	13.7%	
$\mathrm{PCO}_{2}=40 \mathrm{mmHg}$	5.2%	
$\mathrm{PN}_{2}=569 \mathrm{~mm} \mathrm{Hg}$	74.9%	
$\mathrm{PH}_{2} \mathrm{O}=\frac{47 \mathrm{~mm} \mathrm{Hg}}{760 \mathrm{~mm} \mathrm{Hg}}$	$\frac{6.2 \%}{100 \%}$	

Because ventilation does not result in a complete exchange of air due to significant "dead air space" in the conducting portion of the respiratory tree, gas proportions are significantly different between atmospheric air and inter-alveolar air.

Further, as the air is moisturized within the respiratory system, the percent representation from water vapor increases. The values reflect this increase.

External Respiration

(Between Alveolar Air and Blood)

When considering gas exchange, O_{2} and CO_{2} are of primary importance, therefore in this illustration and from here on out, other gasses will be ignored.

Alveolar Air Blood			
760 mm Hg 矿 760 mm Hg			
PO_{2}	100 mm Hg	PO_{2}	40 mm Hg
PCO_{2}	40 mm Hg	PCO_{2}	45 mm Hg

Internal Respiration

(Between Blood and Interstitum)

Although the pressure in all chambers is the same, the gasses move in different directions down their pressure gradients.
$\mathrm{PO}_{2}=160$
$\mathrm{PCO}_{2}=0$ (actually, 0.03)

Note: Values are rounded for purposes of this illustration

External Respiration
(Occurs in Pulmonary Circulation)

$\mathrm{PO}_{2}=100$
$\mathrm{PCO}_{2}=40$

