

Partial Pressure

When there is a mixture of gasses, each gas will exert a pressure in direct proportion to its representation in the mixture.

From Figure 2-1, page 14

Consider this hypothetical model:

Although the pressure in both containers is identical, 100 mm Hg, each gas will exert a partial pressure in direct proportion to its representation in the mixture. Each gas will move down its pressure gradient until an equilibrium is reached.

Atmospheric Pressures

Atmospheric pressue at sea level is 760 mm Hg.

Gas	Partial Pressure	Percent Distribution In Mixture of Gases
PO ₂ =	159 mm Hg	20.9%
PCO ₂ =	0.3 mmHg	0.04 %
PN ₂ =	597 mm Hg	78.6 %
$PH_2O =$	3.7 mm Hg	0.46 %
	760 mm Hg	100 %

Inter-Alveolar Pressures

Gas	Partial Pressure	Percent Distribution In Mixture of Gases
PO ₂ =	104 mm Hg	13.7 %
$PCO_2 =$	40 mmHg	5.2 %
PN ₂ =	569 mm Hg	74.9 %
$PH_2O =$	47 mm Hg	6.2 %
	760 mm Hg	100 %

Because ventilation does not result in a complete exchange of air due to significant "dead air space" in the conducting portion of the respiratory tree, gas proportions are significantly different between atmospheric air and inter-alveolar air.

Further, as the air is moisturized within the respiratory system, the percent representation from water vapor increases. The values reflect this increase.

Atmospheric Air

External Respiration

(Between Alveolar Air and Blood)

When considering gas exchange, O_2 and CO_2 are of primary importance, therefore in this illustration and from here on out, other gasses will be ignored.

Internal Respiration

(Between Blood and Interstitum)

Although the pressure in all chambers is the same, the gasses move in different directions down their pressure gradients.

